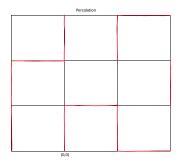
The Critical Behavior for Percolation and the Mean Field Behavior for Oriented Percolation in High Dimensions

Lung-Chi Chen

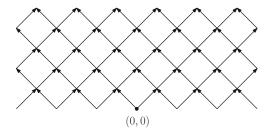
Department of Mathematical Sciences, National Chengchi University

2021 Taiwan Mathematical Society Annual Meeting

January 18th , 2022



Oriented Percolation



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

Let \mathbb{Z}^d be a *d*-dimensional integer lattice, and D(x) is the probability distribution on \mathbb{Z}^d

A (10) > (10)

臣

∢ ≣⇒

Let \mathbb{Z}^d be a *d*-dimensional integer lattice, and D(x) is the probability distribution on \mathbb{Z}^d

I. Percolation

Each bond $\{u, v\}$, which is a pair of vertices in \mathbb{Z}^d , is either occupied or vacant independently of the other bonds. The probability that $\{u, v\}$ is occupied is defined to be pD(v - u), where $p \ge 0$ is the percolation parameter.

Let \mathbb{Z}^d be a *d*-dimensional integer lattice, and D(x) is the probability distribution on \mathbb{Z}^d

I. Percolation

Each bond $\{u, v\}$, which is a pair of vertices in \mathbb{Z}^d , is either occupied or vacant independently of the other bonds. The probability that $\{u, v\}$ is occupied is defined to be pD(v - u), where $p \ge 0$ is the percolation parameter.

II. Oriented Percolation

Each ordered bond $\{(u, t), (v, t + 1)\}$, which is a pair of vertices in $\mathbb{Z}^d \times \mathbb{Z}_+$, is either occupied or vacant independently of the other bonds. The probability that $\{(u, t), (v, t + 1)\}$ is occupied is defined to be pD(v - u), where $p \ge 0$ is the percolation parameter.

・ 同 ト ・ ヨ ト ・ ヨ ト

The primary models in this talk are defined as follows: 1. Bernoulli models on \mathbb{Z}^d :

$$D(x) = egin{cases} rac{1}{2d}, & ext{if} \quad |x| = 1, \ 0, & ext{others.} \end{cases}$$

・ロト ・回ト ・ヨト・ヨト・

크

The primary models in this talk are defined as follows: 1. Bernoulli models on \mathbb{Z}^d :

$$D(x) = egin{cases} rac{1}{2d}, & ext{if} \quad |x| = 1, \ 0, & ext{others.} \end{cases}$$

Let $L \in \mathbb{N}$ fixed s.t.

$$D(x) = \frac{h(x/L)}{\sum_{y} h(y/L)},$$

2. spread-out models: $h \in (0, \infty)$ is symmetric with compact support. (e.q. $h(x) = 1_{\|x\|_{\infty} \le 1}$)

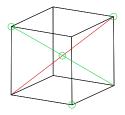
3. long-range spread-out models with order α : if $h \in (0, \infty)$ is symmetric function and $h(x) \approx |x|^{-d-\alpha}$ for some $\alpha > 0$. $(f(x) \approx g(x) \text{ means } |f(x)/g(x)| \in (0, \infty) \text{ as } |x| \to \infty).$

(4回) (4回) (4回)

臣

long-range spread-out models with order α: if h ∈ (0,∞) is symmetric function and h(x) ≈ |x|^{-d-α} for some α > 0. (f(x) ≈ g(x) means |f(x)/g(x)| ∈ (0,∞) as |x| → ∞).
 Bernoulli models on L^d (Body Centered Cubic Lattice):

$$D(x) = egin{cases} rac{1}{2^d}, & ext{if} \quad \prod_{j=1}^d |x_j| = 1, \ 0, & ext{others.} \end{cases}$$



$$C_o = \begin{cases} \{x \in \mathbb{Z}^d : o \leftrightarrow x\}, & \text{Percolation,} \\ \{x \in \mathbb{Z}^d : (o, 0) \to (x, t) \text{ for some } t \in \mathbb{N}\}, & \text{OP,} \end{cases}$$

and let

$$heta_p := P_p(|C_o| = \infty), \quad p_c(d) := \sup\{p : \theta_p = 0\}.$$

▲口> ▲園> ▲園> ▲園> 「園」 釣らぐ

$$C_o = \begin{cases} \{x \in \mathbb{Z}^d : o \leftrightarrow x\}, & \text{Percolation,} \\ \{x \in \mathbb{Z}^d : (o, 0) \to (x, t) \text{ for some } t \in \mathbb{N}\}, & \text{OP,} \end{cases}$$

and let

$$heta_p := P_p(|C_o| = \infty), \quad p_c(d) := \sup\{p : \theta_p = 0\}.$$

Some well-known results:

For Bernoulli percolation on Z², Kesten (1980) showed that p_c(2) = 2.

・ロト ・回ト ・ヨト ・ヨト

臣

$$C_o = \begin{cases} \{x \in \mathbb{Z}^d : o \leftrightarrow x\}, & \text{Percolation,} \\ \{x \in \mathbb{Z}^d : (o, 0) \to (x, t) \text{ for some } t \in \mathbb{N}\}, & \text{OP,} \end{cases}$$

and let

$$heta_p := P_p(|C_o| = \infty), \quad p_c(d) := \sup\{p : \theta_p = 0\}.$$

Some well-known results:

- For Bernoulli percolation on Z², Kesten (1980) showed that p_c(2) = 2.However for Bernoulli oriented percolation on Z², it is still open to find the value of p_c(2).
- van den Berg and Keane (1982) showed that θ_p is continuous on (p_c(d), 1/||D||_∞].
- Burton and Keane (1989) showed that If θ_p > 0, then P_p(∃ a unique infinite cluster) = 1.

$$\begin{split} \chi_{p} &:= E_{p}(|C_{0}|), \, p < p_{c}, \quad \varphi_{p}(x) = P_{p}(o \leftrightarrow x), \\ \xi_{p}^{-1} &= \lim_{n \to \infty} \left\{ -\frac{1}{n} \log P_{p}(o \leftrightarrow \partial B(n)) \right\}, \quad p < p_{c}, \end{split}$$

周▶ ▲ 国▶ ▲ 国▶

where χ_p is called the susceptibility, and ξ_p is called the correlations length.

$$\begin{split} \chi_p &:= E_p(|C_0|), \, p < p_c, \quad \varphi_p(x) = P_p(o \leftrightarrow x), \\ \xi_p^{-1} &= \lim_{n \to \infty} \left\{ -\frac{1}{n} \log P_p(o \leftrightarrow \partial B(n)) \right\}, \quad p < p_c, \end{split}$$

where χ_p is called the susceptibility, and ξ_p is called the correlations length.

Note that if we definition

$$au_{p} = \sqrt{\sum_{x \in \mathbb{Z}^{d}} |x|^{2} \varphi_{p}(x)}, \ p < p_{c}. (\text{ mean square displacement})$$

It can be showed that $\xi_p \approx \tau_p$ as p is near p_c .

For finite-range percolation models, it is expected that, around $p = p_c$, we observe the following power behavior characterized by the critical exponents β, γ, η, ν and δ such that

$$\begin{split} \theta_{p} &\approx_{p \downarrow p_{c}} (p - p_{c})^{\beta}, \quad \chi_{p} \approx_{p \uparrow p_{c}} (p_{c} - p)^{-\gamma}, \\ \varphi_{p_{c}}(x) &\approx |x|^{2 - d - \eta}, \quad \xi_{p} \approx_{p \uparrow p_{c}} (p - p_{c})^{\nu}, \\ P_{p_{c}}(|C_{0}| = n) &\approx n^{-1 - 1/\delta}. \end{split}$$

<回 > < 回 > < 回 >

For finite-range percolation models, it is expected that, around $p = p_c$, we observe the following power behavior characterized by the critical exponents β, γ, η, ν and δ such that

$$\begin{split} \theta_{p} &\approx_{p \downarrow p_{c}} (p - p_{c})^{\beta}, \quad \chi_{p} \approx_{p \uparrow p_{c}} (p_{c} - p)^{-\gamma}, \\ \varphi_{p_{c}}(x) &\approx |x|^{2 - d - \eta}, \quad \xi_{p} \approx_{p \uparrow p_{c}} (p - p_{c})^{\nu}, \\ P_{p_{c}}(|C_{0}| = n) &\approx n^{-1 - 1/\delta}. \end{split}$$

For long-range percolation models, we modify τ_p as follows:

$$\tau_{p} = \big(\sum_{x \in \mathbb{Z}^{d}} |x|^{r} \varphi_{p}(x)\big)^{r}, \quad p < p_{c}, \quad r < \alpha. (\text{Gyration radius})$$

It is expected that, around $p = p_c$, we observe the following power behavior characterized by the critical exponents $\beta, \gamma, \delta, \dots$ such that

$$\begin{split} \theta_{p} \approx_{p \downarrow p_{c}} (p - p_{c})^{\beta}, \quad \chi_{p} &:= E_{p}(|C_{0}|) \approx_{p \uparrow p_{c}} (p_{c} - p)^{-\gamma}, \\ \varphi_{p_{c}}(x) \approx |x|^{(\alpha \wedge 2) - d - \eta}, \quad \xi_{p} \approx_{p \uparrow p_{c}} (p - p_{c})^{\nu}, \\ P_{p_{c}}(|C_{0}| = n) \approx n^{-1 - 1/\delta}. \end{split}$$

The exponents $\gamma,\,\eta,\,\beta$ and ν are predicted to be Fisher's relations as follows:

$$\gamma = (\alpha \wedge 2 - \eta)\nu, \quad \gamma + 2\beta = \beta(\delta + 1).$$

||◆同 || ◆ 三 || ◆ 三 ||

æ

The exponents $\gamma,\,\eta,\,\beta$ and ν are predicted to be Fisher's relations as follows:

$$\gamma = (\alpha \wedge 2 - \eta)\nu, \quad \gamma + 2\beta = \beta(\delta + 1).$$

同 とくほ とくほと

臣

Question: What are the values of γ , η , β and ν ?

For finite-range percolation models

	d=2	d=3	d=4	d=5	d=6	d>6
β	5/36	0.4053 (2021)	0.6590 (2015)	0.8457 (2015)		1
	0.14 (1974)					
7	43/18	1.819 (2021)	1.45 (2015)	1.1817 (2015)		1
δ	91/5 18 (1980)	5.29 (1998)	3.198 (1997)	3.0 (1980)		2
η	5/24	-0.047 (2015)	-0.0954 (2015)	-0.0565 (2015)		0
v	4/3 1.33(1975)	0.8774 (2016)	0.6845 (2021)	0.5737 (2021)		1/2
					< (

∢ 夏♪

æ

Lung-Chi Chen

$$\nabla_{p}(w) = \sum_{x,y \in \mathbb{Z}^{d}} \varphi_{p}(x) \varphi_{p}(y-x) \varphi_{p}(w-y)$$

▲口> ▲園> ▲園> ▲園> 「園」 釣らぐ

$$\nabla_{p}(w) = \sum_{x,y \in \mathbb{Z}^{d}} \varphi_{p}(x)\varphi_{p}(y-x)\varphi_{p}(w-y)$$

The triangle diagram is defined by

$$T(p) = \sup_{w \in \mathbb{Z}^d}
abla_p(w),$$

同 ト イヨト イヨト

臣

and the triangle condition is that $T(p_c) < \infty$.

$$\nabla_{p}(w) = \sum_{x,y \in \mathbb{Z}^{d}} \varphi_{p}(x)\varphi_{p}(y-x)\varphi_{p}(w-y)$$

The triangle diagram is defined by

$$T(p) = \sup_{w \in \mathbb{Z}^d} \nabla_p(w),$$

and the triangle condition is that $T(p_c) < \infty$.

Theorem (Aizenman and Newman (1984), Barsky and Aizenman (1991))

The triangle condition implies $\gamma = 1$, $\beta = 1$ and $\nu = \frac{1}{2}$. (Mean fields behavior)

Theorem (Hara and Slade, 1990) For spread-out model with $L \gg$ and d > 6, we have

$$\gamma = 1, \ \nu = \frac{1}{2}$$
 for any dimensions $d > 6$.

・ロト ・回ト ・ヨト・ヨト・

æ.

Theorem (Hara and Slade, 1990) For spread-out model with $L \gg$ and d > 6, we have

$$\gamma = 1, \ \nu = \frac{1}{2}$$
 for any dimensions $d > 6$.

Theorem (Hara, Hoffstad and Slade, 2003) For spread-out model with $L \gg$, we have

$$\eta = 0$$
 for any dimensions $d > 6$.

周▶ ▲ 国▶ ▲ 国▶

臣

Theorem (Hara and Slade, 1990) For spread-out model with $L \gg$ and d > 6, we have

$$\gamma = 1, \ \nu = \frac{1}{2}$$
 for any dimensions $d > 6$.

Theorem (Hara, Hoffstad and Slade, 2003) For spread-out model with $L \gg$, we have

$$\eta = 0$$
 for any dimensions $d > 6$.

Theorem (Chen and Sakai, 2015) For long-range model with $\alpha \neq 2$ and $L \gg$, we have

$$\gamma = 1, \ \nu = \frac{1}{\alpha \wedge 2} \text{ and } \eta = 0 \text{ for any dimensions } d > 3(\alpha \wedge 2).$$

回 とうほう うほう

臣

Theorem (Chen and Sakai, 2019) For long-range model with $\alpha = 2$ and $L \gg$, we have

$$\gamma=1,\,
u=rac{1}{lpha\wedge 2}$$
 and $\eta=0$ with logarithmic terms

for any dimensions $d \ge 6$.

周▶ ▲ 国▶ ▲ 国▶

Theorem (Chen and Sakai, 2019) For long-range model with $\alpha = 2$ and $L \gg$, we have

$$\gamma=1,\,
u=rac{1}{lpha\wedge 2}$$
 and $\eta=0$ with logarithmic terms

for any dimensions $d \ge 6$.

Theorem (Handa, Kamijima and Sakai (2019) For Bernoulli percolation on *d*-dimensional BCC lattice with $d \ge 9$, we have

$$\gamma = 1, \quad
u = rac{1}{2}.$$

$$\chi_p := E_p(|C_0|), \quad \varphi_p(x,n) = P_p((o,0) \to (x,n)),$$

 $\tau_p(n) := \sqrt{\sum_{x \in \mathbb{Z}^d} |x|^2 \varphi_p(x,n)}, \quad p < p_c,$

where χ_p is called the susceptibility, ξ_p is called the correlations length and $\tau_p(n)$ is called the mean square displacement at time n. For finite-range oriented percolation models, it is expected that, around $p = p_c$, we observe the following power behavior characterized by the critical exponents β , γ , δ , ... such that

$$\begin{split} \theta_{p} \approx_{p \downarrow p_{c}} (p - p_{c})^{\beta}, \quad \chi_{p} \approx_{p \uparrow p_{c}} (p_{c} - p)^{-\gamma}, \\ \sum_{n=0}^{\infty} \varphi_{p_{c}}(x, n) \approx |x|^{2-d-\eta}, \quad \tau_{p_{c}}(n) \approx n^{\nu} \\ P_{p_{c}}(|C_{0}| = n) \approx n^{-1-1/\delta}. \end{split}$$

	d=1	d=2	d=3	d=4	d>4	
β	0.276 (2013)	0.580 (2013)	0.818 (2013)		1	
z	2.277730 (1999)	1.595 (1992)	1.237 (1992)		1	
δ	0.15944 (2013)	0.451 (2013)	0.7398 (2013)		1	
η	0.31370 (2013)	0.2307 (2013)	0.1057 (2013)		0	
v	1.0979 (2013)	0.729 (2013)	0.582 (2013)		1/2	

For long-range oriented percolation models, we modify τ_p as follows:

$$\tau_p(n) = \left(\sum_{x \in \mathbb{Z}^d} |x|^r \varphi_p(x, n)\right)^r, \quad p < p_c, \quad r < \alpha.$$

It is expected that, around $p = p_c$, we observe the following power behavior characterized by the critical exponents $\beta, \gamma, \delta, \dots$ such that

$$egin{aligned} & heta_p pprox_{p \downarrow p_c} \left(p - p_c
ight)^eta, \quad \chi_p pprox_{p \uparrow p_c} \left(p_c - p
ight)^{-\gamma}, \ & \sum_{n=0}^\infty \varphi_{p_c}(x,n) pprox |x|^{lpha \wedge 2 - d - \eta}, \quad au_{p_c}(n) pprox n^
u \ & P_{p_c}(|C_0| = n) pprox n^{-1 - 1/\delta}. \end{aligned}$$

$$\nabla_{p}(x,n) = \sum_{(y,l)} \sum_{(w,m)} \varphi_{p}(y,l) \varphi_{p}(w-y,m-l) \varphi_{p}(w-x,m-n)$$

▲口> ▲園> ▲園> ▲園> 「園」 釣らぐ

$$\nabla_{p}(x,n) = \sum_{(y,l)} \sum_{(w,m)} \varphi_{p}(y,l) \varphi_{p}(w-y,m-l) \varphi_{p}(w-x,m-n)$$

the triangle condition is that

$$\lim_{R\to\infty}\sup\{\nabla_{p_c}(x,n):|(x,n)|\geq R\}=0.$$

▲口 > ▲檀 > ▲ 恵 > ▲ 恵 > -

Ð,

$$\nabla_{p}(x,n) = \sum_{(y,l)} \sum_{(w,m)} \varphi_{p}(y,l) \varphi_{p}(w-y,m-l) \varphi_{p}(w-x,m-n)$$

the triangle condition is that

$$\lim_{R\to\infty}\sup\{\nabla_{p_c}(x,n):|(x,n)|\geq R\}=0.$$

向下 イヨト イヨト

Theorem (Barsky and Aizenman (1991)) The triangle condition implies $\gamma = 1$, $\beta = 1$ and $\nu = \frac{1}{2}$. Theorem (Nguyen and Yang, 1995) For spread-out model with $L \gg$, we have

$$\gamma=1, \ \nu=\frac{1}{2} \quad \text{for any dimensions } d>4.$$

・ロト ・回ト ・ヨト ・ヨト

æ,

Theorem (Nguyen and Yang, 1995) For spread-out model with $L \gg$, we have

$$\gamma = 1, \ \nu = \frac{1}{2}$$
 for any dimensions $d > 4$.

Theorem (Hoffstad and Slade, 2003) For spread-out model with $L \gg$, extended above results for $p = p_c$ with error estimates.

▲圖 ▶ ▲ 唐 ▶ ▲ 唐 ▶

臣

Theorem (Nguyen and Yang, 1995) For spread-out model with $L \gg$, we have

$$\gamma = 1, \ \nu = \frac{1}{2}$$
 for any dimensions $d > 4$.

Theorem (Hoffstad and Slade, 2003) For spread-out model with $L \gg$, extended above results for $p = p_c$ with error estimates. Theorem (Chen and Sakai, 2008, 209) For long-range model with $\alpha > 0$ and $L \gg$, we have

$$\gamma = 1, \ \nu = \frac{1}{\alpha \wedge 2}$$
 for any dimensions $d > 2(\alpha \wedge 2)$.

個 ト イヨト イヨト

Theorem (Nguyen and Yang, 1995) For spread-out model with $L \gg$, we have

$$\gamma = 1, \ \nu = \frac{1}{2}$$
 for any dimensions $d > 4$.

Theorem (Hoffstad and Slade, 2003) For spread-out model with $L \gg$, extended above results for $p = p_c$ with error estimates. Theorem (Chen and Sakai, 2008, 209) For long-range model with $\alpha > 0$ and $L \gg$, we have

$$\gamma = 1, \ \nu = rac{1}{lpha \wedge 2}$$
 for any dimensions $d > 2(lpha \wedge 2)$.

Theorem (Chen, Handa and Kamijima, submitted) For Bernoulli model on *d*-dimensional BCC lattices, we have

$$\gamma = 1, \ \nu = rac{1}{lpha \wedge 2}$$
 for any dimensions $d \geq 9$.

Key arguments

1. Lace expansion and Bootstrapping argument (OP models) By lace expansion

$$\varphi_{p}(x,t) = \delta_{o,x}\delta_{0,t} + \Pi_{p}^{N}(x,t) + \left(\left(\delta_{o,\cdot}\delta_{0,\cdot} + \Pi_{p}^{N}\right) * q_{p} * \varphi_{p}\right)(x,n) + (-1)^{N+1}R_{p}^{N+1}(x,t),$$

where

$$\Pi_{p}^{N}(x,t) = \sum_{n=0}^{N} (-1)^{n} \pi_{p}^{(n)}(x,t), \quad q_{p}(x,t) = D(x) \delta_{t,1}.$$

We can show that for $p < p_c$, we get $|R_p^N(x,t)| \to 0$ for all (x,t) then

$$\varphi_p(x,t) = \delta_0(x)\delta_{0,t} + \prod_p(x,t) + \left(\left(\delta_{o,\cdot}\delta_{0,\cdot} + \prod_p\right) * q_p * \varphi_p\right)(x,n)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Define

$$\begin{array}{lll} g_1(p,m) &:= & p(m \lor 1), \\ g_2(p,m) &:= & \sup_{k \in [-\pi,\pi]^d} \sup_{z \in \mathbb{C}, \, |z| \in (1,m)} \frac{|\varphi_p(k,z)|}{|\hat{S}_{\mu_p(z)}(k)|}, \\ g_3(p,m) &:= & \sup_{k \in [-\pi,\pi]^d} \sup_{z \in \mathbb{C}, \, |z| \in (1,m)} \frac{|\frac{1}{2} \nabla_k (\hat{q}_p(l,z) \hat{\varphi}_p(l,z)|}{\hat{U}_{\mu_p(z)}(k,l)}, \end{array}$$

where $\nabla_k \hat{f}(l) = \hat{f}(l+k) + \hat{f}(l-k) - 2\hat{f}(k)$ and $\mu_p(z) = (1 - \hat{\varphi}_p(o, |z|)^{-1})e^{i \operatorname{argz}}$. For the nearest-neighbor oriented percolation on BCC lattices with dimensions $d \ge 8$, we can show that $\{g_i(p,m)\}_{i=1}^3$ satisfies the following three properties:

- ▶ ${g_i(p,m)}_{i=1}^3$ are continuous in $m \in [0, m_p)$ for every $p \in (0, p_c)$.
- There are finite constant $\{K_i\}_{i=1}^3$ such that $g_i(0,1) < K_i$ with $K_i > 1$ for i = 1, 2, 3.
- We fix both p ∈ (0, p_c) and z ∈ C with |z| ∈ (1, m_p) and assume g_i(p, m) ≤ K_i, i = 1, 2, 3. Then, the stronger inequalities g_i(p, m) < K_i, i = 1, 2, 3, hold.

function $\varphi_p(x, t)$ by a line segment. For example,

$$\varphi_{j}(\mathbf{x}) = \int_{0}^{1} \dots \langle \psi_{i}^{(2)} \circ \varphi_{j} \rangle \langle \mathbf{x} \rangle = \frac{1}{b},$$

 $B_{jyn}^{(1,2)} = \sup_{x} \int_{0}^{1} \int_{0}^{1} \dots T_{jyn}^{(2,1)} = \sup_{x} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \dots \langle \psi_{i}^{(2,2)}(h) = \sup_{x} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \dots \langle \psi_{i}^{(2,2)}(h) = \int_{0}^{1} \dots \langle \psi_{i}^{(2,2)}(h)$

where the unlabeled vertices (short lines and dots) are summed over L⁴ × Z_+. The segments emphasized by the braces mean weighted two-point functions or weighted space-time transition probabilities ψ_P or q_P multiplied by m's or $1 - \cos k \cdot \bullet$. Time increases from the beginning point to the ending point of a line.

Lemma B.T. For
$$\varepsilon \in U^{1,\varepsilon} \mathbb{E}_{n}$$
 and $N \ge 2$.

$$\begin{aligned} \left| \varphi_{n}^{(0)}(x) - \varphi_{n}^{(1)}(x) \right| \\ &\leq \frac{1}{2} + \left(\sum_{k=1}^{n} + \sum_{k=1}^{n} \sum_{k=1}^{n}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = 目 - つらぐ

To estimate the upper bound of $g_2(p, m)$, we need to estimate the upper bound as follows

$$rac{\hat{\Pi}_{p}(o,|z|)-\hat{\Pi}_{p}(k,|z|)}{|1-e^{i heta}\hat{D}(k)|}, \hspace{1em} ext{where} \hspace{1em} z=re^{i heta}, heta\in(-\pi,\pi). \hspace{1em} r\in[1,m_{p}).$$

- 4 同 ト 4 臣 ト 4 臣 ト

臣

To estimate the upper bound of $g_2(p, m)$, we need to estimate the upper bound as follows

$$rac{\hat{\Pi}_{p}(o,|z|)-\hat{\Pi}_{p}(k,|z|)}{|1-e^{i heta}\hat{D}(k)|}, \hspace{1em} ext{where} \hspace{1em} z=re^{i heta}, heta\in(-\pi,\pi). \hspace{1em} r\in[1,m_{p}).$$

Proposition For BCC lattice \mathbb{L}^d with $d \ge 2$, we have

$$g_{2}(p,m) := \sup_{k \in [-\pi,\pi]^{d}} \sup_{z \in \mathbb{C}, |z| \in (1,m_{p})} \frac{|\varphi_{p}(k,z)|}{|\hat{S}_{\mu_{p}(z)}(k)|},$$

$$= \sup_{k \in [-\pi/2,\pi/2]^{d}} \sup_{z \in \mathbb{C}, |z| \in (1,m_{p})} \frac{|\varphi_{p}(k,z)|}{|\hat{S}_{\mu_{p}(z)}(k)|},$$

臣

2. Triangle condition

a. For percolation models, let

 $G(x) := \sum_{n=0}^{\infty} S_n(x) := 1 + \sum_{n=1}^{\infty} \hat{D}^{*n}(x)$. Then using inverse formula, we get

$$\nabla_{p_c} = \sum_{x \in \mathbb{Z}^d} G_{p_c}^{*3}(x) = \int_{[-\pi,\pi]^d} \frac{d^d k}{(2\pi)^d} \hat{G}_{p_c}(k)^3$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

크

2. Triangle condition

a. For percolation models, let

 $G(x) := \sum_{n=0}^{\infty} S_n(x) := 1 + \sum_{n=1}^{\infty} \hat{D}^{*n}(x)$. Then using inverse formula, we get

$$egin{array}{rcl}
abla_{
ho_c} &=& \sum_{x\in\mathbb{Z}^d}G_{
ho_c}^{*3}(x) = \int_{[-\pi,\pi]^d}rac{d^d k}{(2\pi)^d}\hat{G}_{
ho_c}(k)^3 \ &pprox & \int_{[-\pi,\pi]^d}rac{d^d k}{(2\pi)^d}rac{1}{\left(1-\hat{D}(k)
ight)^3}. \end{array}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

크

b. For oriented percolation models, let $G(x, n) := S_n(x) := \sum_{n=1}^{\infty} \hat{D}^{*n}(x)$. Then using the Hausdorff-Young inequality, we get

$$\begin{split} \sup_{(x,n)} \nabla_{p}(w,n) &\leq \sup_{(x,n)} \sum_{(w,s)} \varphi_{p}^{*2}(w,s) \varphi_{p}(w-x,s-n) \\ &\leq \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \int_{[-\pi,\pi]^{d}} \frac{d^{d}k}{(2\pi)^{d}} |\hat{\varphi}_{p_{c}}(k,e^{i\theta})^{2} \hat{\varphi}_{p_{c}}(k,e^{-i\theta})| \end{split}$$

▲□▼ ▲ □▼ ▲ □▼

b. For oriented percolation models, let $G(x, n) := S_n(x) := \sum_{n=1}^{\infty} \hat{D}^{*n}(x)$. Then using the Hausdorff-Young inequality, we get

$$\sup_{(x,n)} \nabla_{p}(w,n) \leq \sup_{(x,n)} \sum_{(w,s)} \varphi_{p}^{*2}(w,s) \varphi_{p}(w-x,s-n) \\ \leq \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \int_{[-\pi,\pi]^{d}} \frac{d^{d}k}{(2\pi)^{d}} |\hat{\varphi}_{p_{c}}(k,e^{i\theta})^{2} \hat{\varphi}_{p_{c}}(k,e^{-i\theta})|$$

Using the infrared bound (i.e., $|\hat{\varphi}_{p_c}(k, e^{i\theta})| \leq \frac{K}{|1-e^{i\theta}\hat{D}(k)|}$ for some $K \in \mathbb{R}$), Then

$$\sup_{(x,n)} \nabla_p(w,n) \approx \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \int_{[-\pi,\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{e^{-ik \cdot x}}{\left|1 - \hat{D}(k)e^{i\theta}\right|^3} < \infty, \quad d > 8.$$

御 🕨 🖉 🖻 🖌 🖉 👘 👘

Then triangle condition holds.